Home etc Blogs R Series: Profiling

R Series: Profiling

0
417
R Series
R Series

In this nineteenth article in the R series, we shall learn about profiling R code.

We will use R version 4.2.1 installed on Parabola GNU/Linux-libre (x86-64) for the code snippets in this article.

$ R --version

R version 4.2.1 (2022-06-23) -- “Funny-Looking Kid”
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under the terms of the
GNU General Public License versions 2 or 3.
For more information about these matters see
https://www.gnu.org/licenses/.

system.time

Consider the ‘Bank Marketing Data Set’ for a Portuguese banking institution available from the UCI Machine Learning Repository available at https://archive.ics.uci.edu/ml/datasets/Bank+Marketing. The data can be used for public research use. There are four data sets available, and we will use the read.csv() function to import the data from a ‘full-bank.csv’ file. The system.time() function on an R expression provides the user, system and total time for the program, as shown below:

> system.time(bank <- read.csv(file=”bank-full.csv”, sep=”;”))
   user  system elapsed 
  0.129   0.000   0.135 

> bank[1:3,]
  age          job marital education default balance housing loan contact day
1  58   management married  tertiary      no    2143     yes   no unknown   5
2  44   technician  single secondary      no      29     yes   no unknown   5
3  33 entrepreneur married secondary      no       2     yes  yes unknown   5
  month duration campaign pdays previous poutcome  y
1   may      261        1    -1        0  unknown no
2   may      151        1    -1        0  unknown no
3   may       76        1    -1        0  unknown no

Another example is computing the cross-product of two matrices. The rnorm() function generates values for the normal distribution. It accepts ‘n’ number of observations along with values for mean and standard deviation. In the following code snippet, we are generating two matrices, ‘m’ and ‘n’, with 30 rows and 15,000 columns, and computing the cross-product between them using the crossprod() function. This is actually faster than calling ‘t(m) %*% y’.

> m = matrix(rnorm(30*15000, mean=0, sd=4), 30, 15000)
> n = matrix(rnorm(30*15000, mean=0, sd=4), 30, 15000)

> system.time(crossprod(m, n))
   user  system elapsed 
  3.716   0.339   4.058

object.size()

The object.size() function gives an estimate for the memory used by an object. It accepts an R object as its argument. You can also pass it a logical value for ‘quote’ to indicate if the result should be displayed within quotes. The ‘units’ argument can specify the units for printing the values. The following standards for the units are accepted – ‘legacy’, ‘IEC’, and ‘SI’. A numeric data type consumes 48 bytes, and with the data there is an additional 8 bytes of overhead.

> object.size(numeric())
48 bytes
> object.size(2)
56 bytes
> object.size(m)
3600216 byte

Rprof and summaryRprof

The time spent by various R functions can be displayed using the Rprof() function. It takes the following arguments:

Argument Description
filename
Output filename to store results. Use NULL to stop profiling
append Logical value to append results or overwrite the file
interval The time interval between taking samples. Default is 0.02
memory.profiling Logical value to write memory information to output file

You can create a ‘profile.out’ results file using the Rprof() function to profile the crossprod()* function, as illustrated below:

> Rprof(filename = “profile.out”, append = FALSE, interval = 0.03, memory.profiling=TRUE)
> crossprod(m, n)
   [,1]       [,2]          [,3]          [,4]          [,5]
    [1,]  1.596159e+02   -8.97348864 -7.103962e+01  3.863508e+01 -1.168697e+02
    [2,] -3.959816e+01   13.93104995 -7.210794e+01  3.495264e+01  4.697674e+01
    [3,]  1.329374e+02  -80.40730081  5.745854e+01 -7.841128e+01 -8.069322e+01
    [4,]  7.727353e+00   78.42727385  1.142679e+01 -9.473472e+01 -4.733995e+01
    [5,]  1.341396e+02  -50.23056812  7.478321e+01 -5.869277e+01 -9.588495e+00
    [6,]  1.741993e+01   45.03771290  5.569390e+01 -2.684412e+01  5.295564e+01
...
> Rprof(NULL)

After the profiling is stopped by using the ‘Rprof(NULL)’ command, the results can be viewed using the summaryRprof() function:

> summaryRprof(filename = “profile.out”)
$by.self
            self.time self.pct total.time total.pct
“crossprod”      3.96      100       3.96       100

$by.total
            total.time total.pct self.time self.pct
“crossprod”       3.96       100      3.96      100

$sample.interval
[1] 0.03

$sampling.time
[1] 3.96

Since we are only running the ‘crossprod()’ function, the output shows that it takes all the time in the computation. The ‘summaryRprof()’ function accepts the following arguments:

Argument Description
filename The file generated by Rprof()
The file generated by Rprof() Memory information
lines Line information
index Stack trace memory information
diff Logical value to indicate the difference in memory
exclude Any functions to filter out in the output

The memory=“stat” option to the summaryRprof() function displays the maximum memory usage, as shown below:

> summaryRprof(filename = “profile.out”, memory=”stat”)
index: “crossprod”
     vsize.small  max.vsize.small      vsize.large  max.vsize.large 
           11749          1597864         13309000       1799964112 
           nodes        max.nodes     duplications tot.duplications 
          113647         15456000                0                0 
         samples 
             136

The time series memory information can be printed using the memory=“tseries” option, as follows:

> summaryRprof(filename = “profile.out”, memory=”tseries”)
     vsize.small vsize.large    nodes duplications     stack:2
0.03     1597864    10059904 15456000        0 “crossprod”
0.06           0  1799964112        0       0 “crossprod”
0.09           0           0        0     0 “crossprod”
0.12           0           0        0     0 “crossprod”
0.15           0           0        0     0 “crossprod”
0.18           0           0        0     0 “crossprod”
0.21           0           0        0     0 “crossprod”
...

The contents of the profile.out file are provided for reference:

$ cat profile.out

memory profiling: sample.interval=30000
:199733:1257488:15456000:0:”crossprod” 
:199459:226253002:15412208:0:”crossprod” 
:199459:226253002:15412208:0:”crossprod” 
:199459:226253002:15412208:0:”crossprod” 
:199459:226253002:15412208:0:”crossprod” 
...

memory.profile()

The memory.profile() function provides memory usage information based on the object type. For example:

> memory.profile()
     NULL   symbol   pairlist   closure environment   promise 
      1     6943      139922        3134      970        5923 
  language   special  builtin      char     logical   integer 
    35223     47      697        8089        5501       24059 
     double   complex   character     ...     any        list 
       1085     1       39918      0           0       11122 
 expression  bytecode externalptr   weakref    raw         S4        		1        8843      976      1166         399         917

Rprofmem()

A more detailed memory profiling can be accomplished using the Rprofmem() function. It accepts the following arguments:

Argument Description
filename The file to write output results
append Logical value to indicate to append or overwrite the file
threshold Allocations larger than R’s large vector heap will be reported

You can initialise ‘Rprofmem()’ and then execute the ‘crossprod()’ function as illustrated in the example below. The ‘Rprofmem(NULL)’ command is used to stop the profiling. The contents of the output file show the memory used by the ‘crossprod()’ function.

> Rprofmem(“Rprofmem.out”, threshold=1000)
> crossprod(m, n)
                  [,1]          [,2]          [,3]          [,4]          [,5]
    [1,]  -33.86416785 -6.161515e+01  1.376119e+02 -1.494083e+01  5.784715e+01
    [2,]  -59.34911436  6.868712e+01 -1.899812e+01 -6.986599e+01 -1.165873e+02
    [3,] -151.68100670 -7.330638e+01 -1.320967e+02  9.607252e+01  1.459454e+02
    [4,]  132.50907447  4.157651e+01  7.621391e+01 -4.062714e+00 -9.967460e+01
    [5,]  -53.53606072  5.132813e+01 -3.571266e+01 -2.835573e+00  6.216842e+01
    [6,]   41.33625436 -1.246898e+02  1.150376e+02 -7.413852e+01 -9.574722e-03
    ...
  
> Rprofmem(NULL)

$  cat Rprofmem.out 
1800000048 :”crossprod” 
60056 :
...

lineprof

The lineprof() built-in is used to provide profiling information for every line in an R program. You can install the same using the following steps:

> install.packages(“devtools”)

> library(devtools)
Loading required package: usethis

> devtools::install_github(“hadley/lineprof”)
Downloading GitHub repo hadley/lineprof@HEAD
...
 ** testing if installed package can be loaded from temporary location
 ** checking absolute paths in shared objects and dynamic libraries
 ** testing if installed package can be loaded from final location
 ** testing if installed package keeps a record of temporary installation path
 * DONE (lineprof)

Consider a function ‘f’ that creates two matrices, doubles its contents, and computes their cross-product. The usage of the ‘lineprof’ function is shown below:

> f <- function() {
+   m = matrix(rnorm(30*15000, mean=0, sd=4), 30, 15000)
+   n = matrix(rnorm(30*15000, mean=0, sd=4), 30, 15000)
+   a <- m * 2
+   b <- n * 2
+   crossprod(a, b)
+ }

> l <- lineprof(f())

> l
   time   alloc release dups                  ref          src
1 0.005   2.151   0.000    0 c(“matrix”, “rnorm”) matrix/rnorm
2 0.410 214.577   0.878    0          “crossprod” crossprod

We again observe that the ‘crossprod()’ function takes the maximum memory allocation and computation time.

gc()

The gc() function triggers the garbage collection to free memory. It also displays information on available memory, as shown below:

> gc()
          used (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells  294146 15.8     661162   35.4    464793   24.9
Vcells 2457665 18.8  220002509 1678.5 227627845 1736.7

tracemem()

The tracemem() function is used to debug memory usage issues in R. It can print a message whenever a marked object for tracing is copied. In the following example, we create an ‘a’ matrix and track its memory usage with the ‘tracemem’ function. The matrix is copied to a ‘b’ matrix, and its contents are then modified. This triggers a printing of the memory address in the output. You can finally stop tracing an R object with the untracemem() function, as shown below:

> a <- matrix(1:8, nrow=2)
> a
     [,1] [,2] [,3] [,4]
[1,]    1    3    5    7
[2,]    2    4    6    8

> tracemem(a)
[1] “<0x563f0483c808>”

> b <- a

> b[1] <- 10
tracemem[0x563f0483c808 -> 0x563f04838078]: 
tracemem[0x563f04838078 -> 0x563f04c850e8]: 

> b

     [,1] [,2] [,3] [,4]
[1,]   10    3    5    7
[2,]    2    4    6    8

> a

     [,1] [,2] [,3] [,4]
[1,]    1    3    5    7
[2,]    2    4    6    8

> untracemem(a)

You are encouraged to read the help pages of the above R functions to learn more about their arguments, options and usage.

NO COMMENTS

LEAVE A REPLY

Please enter your comment!
Please enter your name here